Home | Sitemap | Contact | 中文 | CAS
Search: 
Location:Home>Papers
Latent structure in random sequences drives neural learning toward a rational bias
First author: Sun Y
Abstract:

People generally fail to produce random sequences by overusing alternating patterns and avoiding repeating ones-the gambler's fallacy bias. We can explain the neural basis of this bias in terms of a biologically motivated neural model that learns from errors in predicting what will happen next. Through mere exposure to random sequences over time, the model naturally develops a representation that is biased toward alternation, because of its sensitivity to some surprisingly rich statistical structure that emerges in these random sequences. Furthermore, the model directly produces the best-fitting bias-gain parameter for an existing Bayesian model, by which we obtain an accurate fit to the human data in random sequence production. These results show that our seemingly irrational, biased view of randomness can be understood instead as the perfectly reasonable response of an effective learning mechanism to subtle statistical structure embedded in random sequences.

Contact the author:
Page number: 3788-3792
Issue: 12
Subject:
Authors units:
PubYear: 2015
Volume: 112
Unit code: 153111
Publication name: P NATL ACAD SCI USA
The full text link:
Full papers:
Departmens of first author:
Paper source:
Paper type: SCI-Q1档
Participation of the author:
ISSN:
16 Lincui Road, Chaoyang District, Beijing 100101, China. All Rights Reserved